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Abstract
This paper proposes a novel design of a software-defined matched filter (MF) for digital 
receivers of synthetic aperture radar (SAR). The block diagram of the proposed receiver is 
described in detail. The purpose of this filter is to produce a SAR pulse with higher com-
pression ratio (CR) and lower side lobe level (SLL) than that produced by the conventional 
MF. The proposed design is based on the idea of time windowing of the SAR pulse to 
construct the transfer function of the receiver filter. The shape of the proposed time-domain 
window is optimized to achieve the filter design goals including the minimization of the 
SLL and the realization of the target value of the CR. The transmitted SAR pulse is, first, 
subjected to linear frequency modulation and then subjected to the optimized window. The 
width (time duration) of the proposed window is divided into equal time intervals. The 
proposed time-domain window is constructed as a sequential continuous piecewise linear 
segments. The instantaneous value of the time-domain window at the start of each time 
interval is optimized so as to achieve the optimization goals. The width of the time-domain 
window is shown to be proportional to the width of the compressed pulse after optimi-
zation. The number of the time intervals into which the time duration of the window is 
divided is shown to have a significant effect on the optimization results. The particle swarm 
optimization (PSO) technique is then applied to get the window shape that minimizes the 
SLL for a specific predetermined value of the pulse CR. It is shown that the iterations of 
the PSO are fastly convergent and that the applied algorithm is computationally efficient. 
Also, it is shown that the desired value of the pulse CR is achieved with accuracy of 100%. 
Moreover, the achieved SLLs are about − 65 dB , −90 dB , −114 dB , and −133 dB for pulse 
CR of 5, 3, 2, and 1.5, respectively. Finally, for practical implementation of the introduced 
SAR pulse processing technique, the proposed optimized window is placed as a building 
block in a software-defined receiver of the SAR system.
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1  Introduction

Synthetic aperture radar (SAR) can be considered as the most effective land imaging sys-
tem for earth remote sensing irrespective of the daytime and environmental conditions 
[1–4]. High imaging resolution and high performance of land target detection are essential 
requirements for efficient SAR systems [5]. Thus, in the design of SAR system transceiver, 
the main concern is the imaging resolution and the performance of land target detection. 
In pulsed SAR systems, a short pulse is required for high image resolution whereas a 
long pulse is required for high detection performance [5]. Consequently, there is always 
a trade-off between imaging resolution and detection performance. In this context, SAR 
pulse compression techniques are adapted to mitigate this trade-off problem by gathering 
some benefits of both high resolution and detection-performance. In pulse compression 
techniques, the transmitted SAR pulse has longer duration for high detection performance 
whereas its bandwidth corresponds to a shorter pulse to achieve high imaging resolution; 
see Fig. 1.

One of the most important issues in the SAR system design is the software-defined 
SAR transceiver design [6–10]. In a typical SAR receiver that employs frequency chirp-
ing for pulse compression, the received SAR echo is processed using a matched filter (MF) 
to get its time-domain form at the MF output as a pulse that has a main lobe and multiple 
sidelobes. The matched filter of the SAR receiver maximizes the signal-to-noise ratio at the 
receiver output leading to increase the receiver sensitivity and, thus, enhancing the radar 
system performance. Moreover, for a compressed SAR pulse by applying frequency chirp-
ing, the MF leads to suppress the sidelobe level of the received SAR echo at the receiver 
output and, thus, improves the SAR imaging resolution.

Satisfactory design of the frequency chirping of the transmitted pulse results in a 
received echo pulse with a main lobe of much higher level than that of the side lobes. 
Also, the width of the main lobe is much narrower than that of the transmitted pulse. The 
width of the received echo pulse at the MF output can be calculated as the time difference 
between the first two nulls on the sides of the main lobe of the signal at the MF output. For 
satisfactory performance of the operation of SAR pulse compression, it is required to get a 
pulse compression ratio (CR) that is equal to a predetermined (desired) value. The CR can 

Fig. 1   Scheme of SAR pulse compression for enhancing the imaging resolution
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be defined as the ratio between the width of the main lobe of the received signal at the MF 
output and the width of the transmitted pulse before chirping.

Over the last decade, a lot of research works have been concerned with issue of SAR 
pulse compression. For example, the work of [9] proposes a radar pulse compression 
scheme through an approach that is related to the design of efficient non-linear frequency 
modulation (NLFM) waveforms namely, a temporal predistortioning method of LFM sig-
nals by some nonlinear frequency laws. This method produces a compressed radar pulse 
with SLL of about−40dB . In [10], standard tapered windows are modified and applied to 
side lobe suppression in compressed pulses with LFM chirping to produce a compressed 
radar pulse with maximum SLL of about −43dB . In [11], side lobe suppression is per-
formed by some NLFM laws achieved by applying of a stationary phase technique (SPT) 
synthesis algorithm, where a SLL of about. In [12], different types of weighting window 
are applied for SLL reduction. This work demonstrates some important numerical results 
for the achieved SLL for the applied weighting windows of different shapes to show that 
triangular, Gaussian and Hann give the highest performance. In [13], stretch and corre-
lation processing techniques are applied for pulse compression to achieve a highly com-
pressed pulse, however, the achieved maximum SLL is about −23.8dB . In [14], a variety 
of adaptive processing techniques are applied to range compression in SAR image focus-
ing and evaluated under real and ideal conditions. Some research work present combined 
techniques for radar pulse compression. For example, in [15], the SAR pulse compression 
is performed using spectrum modification and window weighting technique. The applica-
tion of such a combined technique is shown to be capable of reducing the maximum SLL 
to about −49dB . The work of [16] introduces combination of phase predistortion and spec-
trum modification for SAR pulse compression to obtain a maximum SLL of about − 62 dB.

In the present work, a novel design of the MF is proposed for the receiver of SAR to 
produce a SAR pulse with high CR and low SLL. The proposed MF design employs time 
windowing of the SAR pulse to construct the transfer function of the receiver filter. The 
time waveform of the proposed compression window is optimized to achieve the filter 
design goals including minimization of the SLL and realization of the desired CR. The 
proposed compression window is placed as a building block in a software defined receiver 
of the SAR system. The proposed pulse compression process requires the transmitted SAR 
pulse to be subjected to LFM. The time-domain window is constructed as a sequential con-
tinuous piecewise linear segments. The particle swarm optimization (PSO) [17] technique 
is then applied to get the window shape that minimizes the SLL for a specific target value 
of the CR.

The PSO is an evolutionary multi-objective optimization technique that can arrive at the 
best shape of the compression window so as to efficiently satisfy the multiple optimization 
goals including the minimization of the SLL and the achievement of a specific SAR pulse 
compression ratio. It can operate with small or large number control parameters even when 
they have inhomogeneous types. Moreover, the PSO is a simple, computationally efficient, 
and robust iterative technique that can arrive at the design goals even when the initial val-
ues of the control parameters are far from the optimum values. Owing to its fast conver-
gence, the PSO algorithm can arrive at the design goals in a small number of iterations. 
Among the other evolutionary optimization technique, the PSO can be considered as the 
most effective and efficient technique for optimizing the shape of the compression window.

The remaining of this paper is organized as follows. The next section gives a mathemat-
ical formulation of the frequency chirping of SAR pulse. Section 3 provides a description 
of the conventional MF receiver used in the SAR system receiver for pulse compression. 
Section 4 gives a detailed description of the novel SAR system receiver proposed in the 
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present work with the optimized compression window. Section 5 explains how the PSO 
algorithm is applied to construct the time-domain compression window. Section 6 presents 
the numerical results with interesting discussions and conclusions. Finally, Sect. 7 summa-
rizes the most important conclusions of the present work.

2 � Frequency Chirping of the SAR Pulse

A conventional method for radar pulse compression is by frequency chirping using LFM. 
In LFM [5, 6], the radar pulse is constructed as a sinusoidal signal whose amplitude is con-
stant over the pulse duration and zero otherwise. The frequency of the sinusoidal signal is 
fb at the start of radar pulse and increases linearly with the time until it reaches fe at the end 
time of the pulse. If the pulse duration is T  then the slope of increase of the instantaneous 
frequency is 

(
f
e
− f

b

)
∕T.

2.1 � Time Waveform of the LFM Chirped Pulse

In LFM, the transmitted signal is a chirped pulse that can be expressed as follows.

 where �(t) is the instantaneous value of the angle.
The instantaneous frequency, fi(t) can be obtained by differentiating �(t) with respect to 

the time

To obtain LFM chirping the instantaneous frequency, fi(t) , should take the following 
form

 where tb is the start time of the pulse and te = T + tb is the end time of the pulse; fb and fe 
are the start and stop frequencies.

Thus, the angle  �(t) can be expressed as �(t) = ∫ fi(t)dt ; this gives,

It should be noticed that constant of integration in (4) is set to get the phase angle of the 
sinusoidal signal equal to zero at the start of the pulse.

2.2 � Time Discretization for Simulation

For simulation of the SAR pulse transmission, reception, and processing, the time should 
be discretized so as to apply fast Fourier transform (FFT) and inverse fast Fourier trans-
form (IFFT) operations. Let Ns be the number of time samples of the transmitted SAR 
pulse, s(t) . Let the time interval between the successive samples be Δt . Thus, the start time 
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of the nth period is tn = (n − 1)Δt + tb and tb =
(
nb − 1

)
Δt , where nb is the number of the 

time sample at which the transmitted pulse starts. Thus,. The total time for simulation is 
TT = LΔt where L is the total number of sampling periods over which the simulation is 
performed. The center frequency, fc =

(
fb + fe

)
∕2 , is the operating frequency of the SAR. 

The bandwidth of operation is B = fe − fb , then the start and stop frequencies fb , fe can be, 
respectively, expressed as follows.

Thus, the nth frequency components of the transmitted pulse can be expressed as,

For accurate simulation, the sampling frequency, fs , should be much greater than the 
center frequency fc , i.e. fs ≫ fc . The minimum sampling frequency fsmin

= 2fe.

3 � Conventional Design of the MF Receiver for SAR Pulse Compression

When the transmitted pulse travels from the SAR antenna to the target and is reflected 
back to the antenna it gets affected by noise. The main role of the MF [5, 6] is to efficiently 
retrieve the known transmitted signal from the received noisy signal, so MF-based receiver, 
the system is designed to search for the signal which has the similar characteristics as the 
transmitted pulse, in the received signal. The MF is an optimal filter which maximizes the 
signal to noise ratio (SNR) at the receiver output.

3.1 � Conventional Design of MF Receiver for SAR Systems Employing FM Chirping

The transfer function of the MF can be described by the frequency response H(f ) . A 
software-defined SAR receiver has its all functionalities applicable as software modules 
except for the low-noise amplifier (LNA). Such a receiver is shown in Fig. 2; the received 
echo is fed into a MF whose transfer function is the conjugate of the transmitted signal, 
H(f ) = S∗(f ) . The signal, P(f ) , at the output of the MF is the compressed pulse which is the 
IFFT of the product of the received signal spectrum, R(f ) , and the transfer function of the 
MF, H(f ) . Thus, the signal spectrum at the MF output can be expressed as,

(5)f
b
= f

c
−

B

2
, f

e
= f

N
s
= f

c
+

B

2

(6)f
n
= f

b
+ (n − 1)Δf ;Δf =

L

Δt

Fig. 2   Block diagram of the conventional software-defined MF receiver of the SAR system
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Under the assumption that the time-domain waveform of received pulse r(t) is identi-
cal to that of the transmitted signal,s(t) , one can put R(f ) = Aej�S(f ) in (6), where A and 
� are the magnitude and phase of the coefficient of backscattering on the radar target. 
Thus, the frequency-domain expression at the matched filter output can be expressed as,

From (7), it is shown that the bandwidth of the processed echo pulse, p(t) , at the MF 
output is the same as that of the transmitte chirped pulse, s(t).

3.2 � Conventional Design of MF Receiver Employing Windowing Technique for SAR 
Pulse Compression

The MF applies the process of FFT to the received SAR signal as already shown in 
Fig.  2. The application of this process is performed under the assumption that the 
received signal is periodic, which is not the general case. When the received signal is 
non-periodic, then the FFT results in a spread of the received signal spectrum (in the 
frequency domain) that makes the frequency content of the received signal difficult to 
identify. To deal with this problem, the proposed receiver design employs a time-domain 
window function that results in a periodic signal when multiplied by the received signal. 
As a consequence of employing this window, the resulting sidelobes of the signal at the 
receiver output are suppressed. Matched filtering can be done in the frequency domain, 
by combining the MF operation with the windowing so that required computation is 
reduced. Figure 3 shows the block diagram for frequency domain windowing for LFM 
side lobe suppression. In this diagram it is shown how the window is applied to the filter 
frequency response before the true filtering step.

(7)P(f ) = H(f )R(f )

(8)P(f ) = |S(f )|2Aej�

Fig. 3   Block diagram for the conventional software-defined MF receiver employing the conventional win-
dowing technique for improving the perfromance of radar pulse compression using LFM-chirping



Radar Pulse Compression with Optimized Weighting Window for…

1 3

4 � Proposed SAR System Receiver with Optimized Compression 
Window: Novel Design of the MF Receiver

A time-domain window of a standard shape such as Hamming or Hanning or any other 
standard pulse can be employed in the proposed receiver design. However, it is proposed to 
construct an optimized window shape by application of the PSO for the purpose of mini-
mizing the SLL of the signal at the receiver output and achieving a specific pulse CR. The 
proposed windowing method for SAR pulse compression can be explained in view of the 
block diagram shown in Fig. 4.

In the proposed software-defined transceiver of the SAR whose block diagram is 
shown in Fig.  3, the transmitted pulse  s(t) is obtained by using phase-locked-loop 
(PLL) that employs a voltage-controlled oscillator (VCO) with saw tooth control input 
to get the desired frequency ramp form in the time domain with feedback for frequency 
controlled. The frequency-domain form of the transmitted signal s(t) is obtained by 

Fig. 4   Block diagram of the proposed software defined MF based on windowing technique for radar pulse 
compression
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the application of FFT and storing the output S(f ) in the receiver memory. The time-
domain form of the compression window function, w(t) , is obtained by applying the 
PSO as described in following Sections, 5 and 6, of the present paper. The frequency-
domain form of the compression window W(f ) is obtained by applying FFT to the 
time-domain form of the window function, w(t).

The transfer function �(f ) is constructed by multiplying the FFT of the reference 
(LFM) pulse, s(t) , which is the pulse to be transmitted, by t W(f ) as follows.

The function R(f ) is obtained as the FFT of the received echo, r(t) and is, then, mul-
tiplied by the FFT, W(f ) , of the window function to get the frequency domain function 
Y(f ).

Finally, the function Y(f ) is multiplied by the conjugate of the transfer function �(f ) 
to get the frequency-domain form the pulse at the output of the SAR receiver, P(f ).

The function P(f ) is then subjected to IFFT to get the received pulse, p(t) , at the 
output of the MF. According to (9) through (11), the spectrum of receiver output can 
be expressed as follows.

 where H(f ) is the overall transfer function of the SAR receiver.
Making use of (10) the expression (11) can be reformulated as follows.

Making use of (9), the conjugate of �(f ) can be substituted into the expression (13) 
to get.

Finally, P(f ) can be expressed as follows.

For simulation, it is assumed that the received signal r(t) is identical to the transmit 
signal, s(t) , and hence one can consider R(f ) = Aej�S(f ) as mentioned above. Under this 
assumption, the substitution for R(f ) into (15) gives following expression for the signal 
at the MF output.

As the window w(t) is a narrow pulse in time domain, it has a wide spectrum W(f ) 
in the frequency domain. Thus, according to (16), the pulse p(t) = IFFT{P(f )} is much 
narrower than  s(t) in the time domain.

(9)η(f) = W(f)S(f)

(10)Y(f) = W(f)R(f)

(11)P(f) = Y(f)η
∗
(f)

(12)P(f ) = H(f )R(f )

(13)P(f ) = W(f )�∗(f )R(f )

(14)P(f ) = W(f )W∗
(f )S∗(f )R(f )

(15)P(f ) =
|||W(f )2

|||S
∗
(f )R(f )

(16)P(f ) = |W(f )|2|S(f )|2Aej�
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5 � Optimized Time‑Domain Window for SAR Pulse Compression

In this section, the method of compression window optimization to produce minimum SLL 
for a specific desired value of the pulse CR is described in detail. First, the time-domain 
window is constructed as piecewise linear curve and then the PSO algorithm is applied 
after the formulation of the cost function. The following subsections are dedicated for this 
purpose.

5.1 � Piecewise‑Linear Segmentation for Construction of the Time Waveform 
of the Compression Window

To get the optimum shape of the windowing function that minimizes the SLL and achieves 
a desired value of the pulse CR, this window constructed as successive time samples of 
arbitrary values as shown in Fig. 5, the compression window can be described as a vector 
w, which gives the values of the window at the corresponding times samples given by the 
time vector �.

 where, K, is the number of time samples.
Also, it is assumed that the interconnections between the sample points of the com-

pression window are straight–line segments. In other words, each pair of successive points (
tk−1,wk−1

)
 and 

(
tk,wk

)
 are connected by a linear segment. It should be noted that for simu-

lation, the application of the time window starts with the start of the chirped pulse. This 

(17)w = [w
1
,w

2
, ..,wn, ..,wK]

(18)t = [t
1
, t
2
, .., tn, .., tK]

Fig. 5   Piecewise linearly segmented curve for the window function in the time domain
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means that the duration of the application of the compression window w(t) is the same 
as the duration of the SAR pulse. However, the window width can be different from the 
SAR pulse width. This means that tK = T + t

0
 and K = Ns − N

0
 . In general, the compres-

sion window can take arbitrary shape. However, the width of w(t) can be given as the 3 dB 
power width which is the time interval over which the window samples have one-half 
the total power of the compression window. The width,Tw , of the compression window is 
defined as the central time duration over which the area under the squared curve is one-half 
the total area under the squared curve. This time interval is centered at tc =

N

2
Δt + t

0
.

5.2 � Application of the PSO to Minimize the SLL of the Received Echo Pulse

The objective of the optimization problem is to arrive at the optimal shape of time-domain 
compression window in its discrete form under the assumption that the discrete points of 
the window are interconnected using linear segments. The final goal is to minimize the 
SLL of the SAR pulse at the output of the MF of the SAR receiver and to realize a pre-
determined value of the CR. The swarm is composed of NS particles; each particle can be 
considered as a vector � has N components (time samples) as given by (20).

5.2.1 � Formulation of the Optimization Problem

Let the achieved time duration between the first two nulls on the sides of the main lobe of 
the signal r(t) at the output of the MF be TP and let the desired value (optimization goal) of 
this duration to be TD . Thus, the target value of CRD is T∕TD . The CR of the radar pulse is 
defined as the ratio between the chirped pulse width, T  , and the time duration, Tp , between 
the first nulls on the sides of the main lobe of the compressed pulse at the receiver output. 
Thus, the achieved CR can be defined as CR = CRP = T∕TP . As the objective of the PSO 
algorithm is to minimize the SLL and to get the compressed pulse width, TP , as close as 
possible to the desired width, TD , the cost function can be formulated as follows.

 where �max(�) , is the maximum SLL achieved by a window shape that is given by the vec-
tor � , TP(�) is the achieved width, TD is the desired pulse width, FS and FP are weighting 
factors to determine the contributions of the maximum SLL and the deviation from the 
desired window width to the cost function C(�).

According to (19), the PSO has two objectives; minimization of the maximum SLL and 
achieving a predetermined value of the pulse CR. It may be logic to intuit that relaxing the 
condition to achieve the desired pulse CR enables the PSO algorithm to achieve a lower 
value of the maximum SLL whereas aiming at a higher CR will cause the achievable SLL 
to increase.

The optimization problem can be formulated as follows. It is required to get the samples 
� that achieve the following

The constraint (20-b) means the window samples should be positive while the PSO iter-
ations are running.

(19)C(w) = FS�max(w) + FP
||TP(w) − TD

||

(20a)��������F
S
�
max

(w) + F
P
||TP(w) − T

D
||

(20b)subjectto ∶ wk ≥ 0,∀k ∈ {1, 2, ..,K}
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5.2.2 � Implementation of the PSO

The optimization space (swarm of particles and their positions) contains NP particles. 
The nth particle has its position within the swarm in the �th iteration given by the vec-
tor �(�)

n
 . The implementation of the PSO algorithm can be divided into four stages: (i) 

initialization of positions,�n(0) and velocities,�n(0) , for the particles of the swarm. The 
initial values of the particles wn

(0) where ∀n ∈
{
1, 2, ..,Ns

}
 can be set by assigning the 

sample values of Wn,k
(0) to take the shape of Hamming window with the width, WH . 

The samples of

 

where k is the time sample index, n is the particle number, and rn,k is a random ∈ [0, 1]. 
The subscripts n, k of the rn,k mean that this random number is generated for each pair 
of the indices(n, k) . (ii) calculation of the local best positions,�n , for the particles, (iii) 
Calculation of the global best position, g, (iv) calculation of the particles velocities, 
�n

(1) , and positions,�n(1) , for the next iteration. The superscript(H) refers to the samples 
of the Hanning window that is suggested as the initial values of the window samples.

The following equations are used to implement an iterative PSO algorithm:

where � is the iteration number (time index), u is the inertia weight parameter,c
1
, c

2
 are 

acceleration factors and r
1
, r

2
 are random numbers between 0 and 1. For each particle, 

the initial position,�n(0) , is determined by assigning random values (varying around the 
unity) to the amplitudes of the excitation voltages of the array elements. The initial local 
best position of each particle,�n(0) , is assigned the same initial value of the particle posi-
tion,�n(0) . The initial value of the velocity of each particle is set to zero. The local best posi-
tion,�(�)

n
 , for each particle is the position of this particle that results in the minimum value 

of the cost function over the progressive iterations during the run of the PSO algorithm. 
The global best position,�(�) , for the particles in the swarm is the position among the local 
best positions that results in the absolute minimum value of the cost function over the suc-
cessive iterations during the run of the PSO algorithm. In each iteration, the velocity,�n , 
and position,�n,for each particle in the swarm are updated, as given by (22-a) and (22-b).

6 � Results and Discussions

This section is concerned with the presentation and discussion of the numerical results 
of the achieved SLL and pulse CR using the conventional LFM chirping and the con-
ventional weighting window methods. Also various the achievements of SAR pulse 
compression techniques proposed in some recent publications. Finally the SLL and 
pulse CR achieved by the optimized window technique introduced in the present work 

(21)wn,k
(0)

= wk
(H)

∗ [1 + 0.1
(
rn,k − 0.5

)
]

(22a)vn
(�)

= uvn
(�−1)

+ c
1
r
1

[
yn

(�−1)
− xn

(�−1)
]
+ c

2
r
2
[g(

�−1)
− xn

(�−1)
]

(22b)xn
(t)

= xn
(�−1)

+ vn
(�)
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are presented, discussed, and compared to those achievement available in the most 
recently published work.

6.1 � Chirped SAR Pulse using Conventional LFM

The LFM is a conventional method for improving the resolution of the radar, the unchirped 
radar pulse, shown in Fig. 6a is subjected to chirping using LFM. Thus, the square pulse 
becomes the envelope of a sinusoidal wave whose instantaneous frequency increases lin-
early with time as shown in Fig. 6b. It is shown that the phase of the sinusoidal signal is 
zero at the start time of the chirped pulse. A numerical example can be used for quantita-
tive explanation; a square pulse of duration T = 50ns , Fig. 6a is subjected to chirping using 
LFM as described in Sect. 2 to get the chirped pulse whose time waveform is shown in 
Fig. 6b. For discretization, the sampling frequency is set as fs = 15fc , where fc = 1.27GHz 
is the central frequency, Ns = 15 , and L = 12700 . The application of the FFT results in the 
frequency spectrum of the chirped pulse shown in Fig. 6c.

The process of the conventional MF described in Sect. 3 is applied to receive and pro-
cess the echo pulse, r(t) , reflected from the radar target due to the transmitted chirped 
pulse, s(t) , described above. The time waveform of the conventionally LFM-chirped pulse 
at the receiver MF output is shown in Fig. 7. It is shown that the processed echo pulse, p(t) , 
at the MF output has a main lobe and many side lobes of very low level relative to that of 
the main lobe. The main lobe is compressed, i.e., it has very short time duration relative to 
the duration T  of the transmitted radar pulse. However, many side lobes exist, the highest 

(a) (b) (c)

Fig. 6   The chirped pulse using the conventional LFM: a Square pulse before chirping (a) time-domain form 
of the chirped pulse, s(t) . b Frequency-domain form of the chirped pulse S(f )

Fig. 7   Time waveform of the 
compressed pulse at the output of 
the MF with maximum SLL of 
about − 13.1 dB and pulse CR of 
about 128
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of them is the second lobe. It shown that the maximum SLL is about − 13.1 dB . The width 
of the pulse p(t) can be calculated as the time difference between the first two nulls on 
the sides of the main lobe. It is shown that the compressed pulse width is 0.39ns . The 
pulse compression can be obtained by dividing the width of the pulse before compression, 
Fig. 6a by the width of the main lobe of p(t) ; this gives a CR of 128 . Thus, the frequency 
chirping using LFM results in very high CR but such SLL may not be adequate for accu-
rate SAR imaging.

6.2 � Compression Window Technique to Improve the Performance of LFM‑Chirping

As mentioned in Sect. 4, the application of time or frequency windowing to LFM-chirped 
pulse leads to improve the performance of the pulse compression regarding the CR and the 
maximum SLL. One of the well-known and most effective time-domain windows is the 
Hanning window. The application of Hanning window of width 1ns , shown in Fig. 8a, to 
the LFM-chirped pulse, shown in Fig. 6, results in the time waveform shown in Fig. 8b for 
the received signal at the output of the MF. The width of the main lobe is 1.2ns , which cor-
responds to CR of about 42, whereas the maximum SLL is about − 22.6dB.

For investigating the impact of the compression window width on the effectiveness of 
the proposed pulse compression process, the following example is demonstrated. In this 
example, the application of Hanning window of width 6ns , whose time waveform is pre-
sented in Fig. 9a, results in the received signal at the output of the MF whose time wave-
form is shown in Fig. 9b. It is shown that the width of the main lobe is 6.6ns , which cor-
responds to CR of about 7.5 , whereas the maximum SLL is about −28.2dB.

From the previous two examples, it is clear that to obtain lower SLL of the received 
pulse at the MF output, the width of the Hanning window should be increased which, in 
turn, results in lower CR of the SAR pulse. Thus, a compromise should be done to choose 
the window width that is more appropriate for a specific application.

(a) (b)

Fig. 8   The Hanning window of width = 1ns leads to compressed pulse with maximum SLL of about 
−22.6dB and pulse CR of about 42 . a Compression window. b Compressed pulse at the output of the MF
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6.3 � The Optimized Window for SAR Pulse Compression

In this subsection, six numerical examples are presented to show the performance of SAR 
pulse compression using the optimized window technique proposed in the present work.

The PSO algorithm runs to construct the optimum window with the optimization goal to 
achieve a predetermined value of the CR and to minimize the SLL. Let the initial window 
shape for the PSO algorithm be that of a Hanning window of width 1ns as that shown in 
Fig. 10a. In this case, the PSO algorithm takes about 300 iterations to arrive at the opti-
mized window shape shown in Fig.  10b whose width is still 1ns like that of the initial 
window. The resulting time waveform of the compressed pulse at the MF output is shown 

(a) (b)

Fig. 9   The Hanning window of width = 6ns leads to compressed pulse with maximum SLL of about 
−28.2dB and pulse CR of about 7.4 . a Compression window. b Compressed pulse at the output of the MF

(a) (b) (c)

Fig. 10   The optimized window of width = 1ns leads to a compressed pulse with maximum SLL of about 
−40.5dB and pulse CR of about 20 . a Initial window. b Optimized window. c Compressed pulse at the out-
put of the MF
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in Fig.  10c where the main lobe width is about 2.5ns . The resulting CR is 20 , whereas 
the maximum SLL is about − 40.5dB . Thus, when compared with the case of applying 
the Hanning window of width 1ns as previously discussed; see Fig. 8, the application of 
an optimized window of the same width results in reducing the SLL from − 22.6dB to 
−40.5dB whereas the CR is decreased from 42 to 20 . As the SLL is more critical for the 
radar operation than the CR, the application of the optimized window can be considered 
much superior to the application of the Hanning window.

Other cases are for compressed pulse using the optimized window present in Figs. 11, 
12, 13 and 14. In these examples, it is shown that the lower the predetermined (desired) 
pulse CR the lower the achieved SLL.

The last example of the application of PSO on Hanning window is shown in Fig. 15 
with width 6ns . The optimized window shape is shown in Fig. 15a. The output of the MF is 

(a) (b)

Fig. 11   The optimized window of width = 1.68ns leads to a compressed pulse with maximum SLL of about 
−45dB and pulse CR of about 12 . a Optimized window. b Compressed pulse at the output of the MF

(a) (b)

Fig. 12   The optimized window of width 2.32ns leads to a compressed pulse with maximum SLL of about 
−49dB and pulse CR of about 9 . a Optimized window. b Compressed pulse at the output of the MF
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the time waveform of the compressed pulse shown in Fig. 15b where the main lobe width 
is about 25ns . The resulting CR is 2 , whereas the maximum SLL is − 115 dB . Thus, when 
compared with the case of applying the Hanning window of width 6ns , the application of 
the optimized window of the same width results in reducing the SLL from − 28.2dB to − 
114dB whereas the CR is decreased from 7.4 to 2.

For comparative assessment of the effectiveness of the proposed method, the well 
known Hanning window, as one of the conventional time-domain shapes of the radar 
pulse compression windows, is applied to compress the SAR pulae presented in Fig. 6. 
so as to compare its performance regarding the resulting pulse CR and maximum SLL 
with the performance obatined by the application of the optimizaed window proposed 
in the present work. A Matlab® is written specially for the purpose of comparizon. It 
should be noted that some results that have been obtained by applying the Hanning win-
dow are presented in Figs. 8 and 9. Table 1 shows a list of the achieved SLL and the 

(a) (b)

Fig. 13   The optimized window of width 2.9ns leads to a compressed pulse with maximum SLL of about 
−63dB and pulse CR of about 5 . a Optimized window. b Compressed pulse at the output of the MF

(a) (b)

Fig. 14   The optimized window of width 4.5ns leads to compressed pulse with maximum SLL of about 
−88dB and pulse CR of about 3 . a Optimized window. b Compressed pulse at the output of the MF
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corresponding CR using the Hanning window compared to those achieved by the opti-
mized window technique proposed in the present work. It is shown that, for the same 
value of the pulse CR, the proposed window achieves much lower value of the SLL than 
that achieved by the Hanning window. It should be noted that, a narrower compression 
window gives higher pulse CR. For example, for a pulse CR of 20 , Hanning window 
of width 1ns achieves a SLL of − 23.5dB , whereas the proposed window (of the same 
width) achievs a SLL of − 42dB . For relatively low pulse CR of 5, Hanning window of 
width 5.2ns achieves a SLL of −36dB , whereas an optimized window of the same width 
achievs a SLL of −65dB . Thus, with increasing the compression window width the max-
imum SLL is improved whereas pulse CR is decreased. However, the rate of reduction 
(improvement) of the SLL with increasing the width of the compresion window using 
the proposed optimized window is much better than that obtained by the application of 
Hanning window provided that both windows have the same width.

6.4 � Relations Among the Achieved CR, SLL and Width of the Compression Window

Two objectives are to be achieved Predetermined value of the CR and low SLL of the 
received SAR pulse at the MF output. Figure 16 presents the dependencies of the max 
SLL of the received pulse at the MF output and the corresponding CR on the width of 

(a) (b)

Fig. 15   The optimized window of width = 6ns leads to a compressed pulse with maximum SLL of about 
−114dB and pulse CR of about 2 . a Optimized window. b Compressed pulse at the output of the MF

Table 1   The achieved SLL and pulse CR in comparison to the corresponding values achieved by Hanning 
window

CR 40 20 12 10 8 7 6 5 4 3 2 1.5

SLL Hanning − 23 − 23.5 − 24 − 25 − 27 − 30 − 32 − 36 − 41 − 49 − 60 − 70
Proposed − 30 − 42 − 44 − 46 − 51 − 55 − 58 − 65 − 71 − 90 − 114 − 133
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the compression window that has been optimized using the PSO. It is shown that to 
obtain lower SLL of the received pulse at the MF output the width of compression win-
dow should be increased which results in lower CR of the SAR pulse. Thus, the objec-
tives of high CR and low SLL seem to be contradicting with each other. A compromise 
should be carried out to select the optimum width of the compression window.

6.5 � Computational Efficiency and Rate of Convergence of the PSO Algorithm

The cost function C(�) given by (19) decays with progressive iteration of the PSO algo-
rithm as shown in Fig.  17 for three different cases. As shown in this figure, the PSO 
consumes from 200 – 400 iterations to reach the steady state at which the best achiev-
able performance is obtained. The stair case in the curve is attributed to the application 
of the constraint given by (20-b). In each iteration, if a time sample of the compres-
sion window is negative it is overridden to be zero. Of course, the application of this 
constraint causes the decay curve to be locally horizontal which results in the staircase 

Fig. 16   Dependence of the achieved SLL and pulse CR of the resulting compressed pulse on the width of 
the window after the applicationof the PSO

Iteration number ( ) Iteration number ( ) Iteration number ( )

(a) (b) (c)

Fig. 17   Decay of the cost function with the successive iterations of the PSO algorithm. a CR = 7 , 
SLL = −54dB . b CR = 8 , SLL = −51dB . c CR = 9 , SLL = −49dB
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appearance of the curve and also, slows down the decay of the cost function with the 
PSO iterations.

The fast convergence of the PSO algorithm and the low value of the cost function at 
the steady state of the PSO algorithm reflects the computational efficiency of the pro-
posed method including the suitable formation of the optimization problem together 
with the cost function and the robustness of the developed algorithm for the application 
of the PSO.

6.6 � Comparative Performance Summary

Comparisons among the achieved SLL using different pulse compression techniques pro-
posed in some recent publications are demonstrated in Table 2. It is shown that the opti-
mized compression window method proposed in the present work gives much lower SLL 
than those obtained in the other published work. However, the achieved SLL in the present 
work is variable and depends on the desired value of the pulse CR as listed in Table 2. 
It should be noted that the methods listed in Table 2 are briefly mentioned in the “Intro-
duction” section of the present paper. Also, it is noticed that the best results considering 
the suppression of the sidelobes result in SLLs of those obtained using the methods that 
employ combined techniques like those presented in [15] and [16] to obtain SLLs of about 
−49dB and −62dB , respectively. Recall that the method presented in [15], applies the com-
bined spectrum modification and window weighting technique for SAR pulse compression, 
whereas the work of [16] introduces the combined technique of phase predistortion and 
spectrum modification for SAR pulse compression. However, the maximum SLLs achieved 
in the present work depend on the pulse CR. To achieve better SLL, the pulse CR should 
be reduced. As shown in Table 1, a maximum SLL of −65dB is achieved for pulse CR of 5, 
which is better than those obtained in [15] and [16].

7 � Conclusion

A novel design of a software-defined filter for digital receivers of SAR systems has been 
proposed. The proposed filter produces a SAR pulse with higher CR and lower SLL than 
that produced by the conventional MF. The novel filter design is based on the time window-
ing of the SAR pulse, where the shape of the proposed time-domain window is optimized 
to minimize the SLL and to realize the desired pulse CR. The transmitted SAR pulse is, 
first, subjected to LFM and then subjected to the optimized window. The proposed window 
is constructed as a sequential continuous piecewise linear segments. The PSO algorithm is 
then applied to get the window shape that minimizes the SLL for a specific predetermined 
value of the pulse CR. The iterative PSO is shown to be fastly convergent and computation-
ally efficient. Also, it is shown that the desired value of the pulse CR is exactly achieved. 
On the other hand, the achieved SLLs are about − 65 dB , − 90 dB , − 114 dB , and − 133 dB 
for pulse CRs of 5, 3, 2, and 1.5, respectively. By comparsison, the method proposed in the 
present work has been proved to be superior to those conventional windowing techniques 
used for radar pulse compression. For example, a pulse CR of 20 , Hanning window of 
width 1ns achieves a SLL of − 23.5dB , whereas the proposed window achievs a SLL of 
−42dB . For relatively low pulse CR of 5, Hanning window of width 5.2ns achieves a SLL 
of −36dB , whereas an optimized window of the same width achievs a SLL of −65dB . Als, 
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when compared with the numerical results presented in some recently published work, the 
SLL achieved in the present work for specific pulse CR is shown to be better than those 
than those obtained by the other techniques. As the proposed technique has been applied 
in the present paper for only LFM chirped pulse, it is suggested, as a future extension, 
to apply the optimized window technique, for compression of a SAR pulse that has been 
chirped using NLFM. This is expected to give better performance of the SAR pulse com-
pression than that obtained using LFM chirping.
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